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The dynamics of vortices in type-Il superconductors exhibit a variety of patterns whose origin is poorly
understood. This is partly due to the nonlinearity of the vortex mobility, which gives rise to singular behavior
in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis.
In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical
stability of a front between vortices and antivortices. In particular, we focus on the question of whether an
instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas
developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows
that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts
are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on
the basis of approximate calculations for stationary fronts. As our method extends to more complicated models,
which could include coupling to the temperature or to other fields, it provides the basis for a more systematic
stability analysis of nonlinear vortex front dynamics.

DOI: 10.1103/PhysRevE.70.026209 PACS nund)er05.45-a, 74.25.Qt

[. INTRODUCTION The nucleation of dendrites associated with the propaga-
tion of a flux front into a virgin sample has been attributed to
such an interfacial instability. This results from a thermo-

The properties of type-Il superconductors have been studnagnetic coupling4,5,14,13 where a higher temperature
ied extensively in past decades. The analysis of patterns #§ads to a higher mobility, enhanced flux flow, and hence a
the magnetic flux distribution has generally focused on equil@rger heat generation. However, the cause of the instability
librium vortex phases. The interplay of pinning and fluctua-at the boundary between fluxes of opposite sign is still being
tion effects, especially in the highs superconductors, gives debated. Shapiro and co-workgis] attribute these patterns
rise to a rich variety of phases whose main features are b & coupling to the temperature field via the heat generated

now rather well understooflL,2]. In comparison with equi- 2Y the annihilation of vortices with antivortices. On the other

o : . hand, Fisheet al. [17,18 claim that an in-plane anisotropy
!|br|um behawor, however, our gnderstand_mg of the dynam of the vortex mobility is sufficient to generate an instability.
ics of vortices, and the dynamical formation of vortex pat-

S There are several reasons to carefully reinvestigate the
terns, is still much _Iess well Qeveloped. . . idea of an anisotropy-induced instability of propagating
Recently, experiments with magneto-optical techniques;g ey antivortex fronts. First of all, even though this mecha-
on flux penetration in thin films have revealed the formationnism was claimed to be relevant for the “turbulent” behavior
of a wide variety of instabilities. An example is the nucle- gt the poundaries of opposite flux regions, the critical aniso-
ation of dendritelike patterns in Nb and MgBIms [3-5.  tropy coefficients found on the basis of an approximation
These complex structures consist of alternating low and higii17,18 correspond to an anisotropy too high to describe a
vortex density regions and are found in a certain temperaturgealistic situation, even when a nonlinear relation between
window. Likewise, flux penetration in the form of droplets the current and the electric field was considef&é—21.
separating areas of different densities of vortices has beeBecondly, the calculation was effectively done for a symmet-
observed in NbSe[6]. Patterns with branchlike structures ric stationary interface, rather than a moving one. Thirdly,
have been found also in high:materials, like YBaCu;O;_,  the physical picture that has been advan¢gd for the
[7]. In addition, the scaling of the fluctuations of(stable  anisotropy-induced instability is that of a shear-induced
vortex front penetrating a thin sample has been stufBéd  Kelvin-Helmholtz instability, familiar from the theory
Usually the occurrence of dendritelike patterns in interfa-of fluid interfaces[22]. However, it is not clear how far
cial growth phenomena can be attributed to a diffusionthe analogy with the Kelvin-Helmholtz instability actually
driven, long-wavelength instability of a straight front, similar extends.
to the Mullins-Sekerka instability[9] found in crystal In order to try to settle the mechanism that underlines
growth. In this paper, we therefore investigate the stability ofsuch phenomena, we investigate here the linear stability of
a straight front of vortices and antivortices which propagatehe interface between vortices and antivortices without any
into a type-Il superconductor. Furthermore, according to thepproximations in the case where the front of vortices propa-
experimental dat410-13, the boundary between vortices gates with a finite velocity. We perform an explicit linear
and antivortices exhibits many features suggestive of a longstability analysis which shows that, in the presence of an
wavelength instability. in-plane anisotropy, vortex fronts with sufficiently large

A. Motivation
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speedare stable in the absence of coupling to the temperathe vortex densities. Our procedure thus differs from the one
ture. We shall see that the issue of the stability of frontsof [17,18 in which a sharp interface limit was used. In many
between vortices and antivortices is surprisingly subtle anghysical systems, it is often advantageous to map the equa-
rich: while we confirm the finding of Fishegt al. [17,18  tions onto a moving boundary effective interface problem, in
that stationary fronts have an instability to a modulated statgyhich the width of the transition zone for the fields is ne-
our moving fronts are found to be stable for all anisotropiesglected. One can in principle derive the proper moving
Moreover, our calculations indicate that the stability of suchpoyndary approximation from the continuum equations with
fronts depends very sensitively on the distribution of antivore 4iq of singular perturbation theory. The analogous case of
tices in the domain into which the front propagates, so it ishe pacterial growth frontg29] indicates, however, that such
difficult to draw general conclusions. a derivation can be quite subtle for nonlinear diffusion prob-

Bes_ldes the intrinsic motvation to understand_thls aniS01ems. Indeed it is not entirely clear whether the assumptions
tropy issue, there is a second important motivation for this

work. Our coarse-grained dynamics of the vortex densities i%'ssi.?.ég tggrstu%%ggz;acee“?; gf dFéegi?’ ;? ;r:ealftue“r)rzat' o
reminiscent of reaction-diffusion equations with nonlinear/YstMed. ! : W v Vvelop v

diffusion. This makes the coarse-grained vortex dynamicé"‘nd more rigorous stabi_lity analysis Whi?h allows for a sys-
very different from the Gaussian diffusive dynamics of a!€matic study on fronts in vortex dynamics.
linear diffusion equation. For example, the fact that vortices B. The model
penetrate a sample with linear density profi[@8] is an '
immediate consequence of this. More fundamentally, the dy- The physical situation that we have in mind refers to a
namically relevant fronts in such equations with nonlinearsemi-infinite two-dimensional2D) thin film in which there
diffusion are usua”y associated with nonanah(mgl_“ab is an initial uniform distribution of vortices due to an exter-
behavior of the vortex densities—such singular behavior hagal field H applied along thez direction. By reversing and
been studied in depth for the so-called porous medium equddcreasing the field, a front of vortices of opposite sign pen-
tion [24—26, which has a similar nonlinear diffusion. In the etrates from the edge of the film. We will refer to the original
case we will study, the front corresponds to a line on one sid¥ortices as antivortices with density, and to the ones pen-
of which one of the vortex densities is nonzero, while on theetrating in after the field reversal as vortices with density
other side it vanishes identically. In the regime on which weln the region of coexistence of vortices and antivortices, an-
will concentrate, this vortex density vanishes linearly neamihilation takes place. Vortices are driven into the interior of
the singular line. But for other cases encountered in the litthe superconducting sample by a macroscopic supercutrent
erature[18,27), even more complicated nonlinear dynamical @long they direction due to the gradient in the density of the
equations arise that are reminiscent of reaction-diffusioninternal magnetic field. Flux lines then tend to move along
type models in other physical systems. The case of bacteridine directionx transverse to the current under the influence
growth modelg28,29 illustrates that the nonlinearity of the Of the Lorentz force on each vortesee, e.g.[1,2)),
diffusion process can have a dramatic effect on the front 1
stability, so a careful analysis is called for. Nevertheless, in Ff= 2 =JX ¢y e, (1)
our case nonlinear diffusion by itself does not lead to an ¢
instability of the front, unlike in the bacterial growth case where ¢, is the quantum of magnetic flux associated with
[29] or viscous fingerind9]. each Abrikosov vortex. We consider the regime of pure flux
From a broader perspective, we see this work as a firglow in which pinning can be neglected, while the viscous
step towards a systematic analysis of moving vortex frontsgamping then gives rise to a finite vortex mobility. We follow
The linear stability analysis which we will develop can a coarse-grained hydrodynamic approach in which the fields
equally well be applied to dynamical models which includevary on a scale much larger than the distance between
coupling to the temperature or in which the current-voltageyortices. Since the magnetic flux penetrates in the form of
characteristic is nonlinear. For this reason, we present thguantized vortices, the total magnetic field in the interior
analysis in some detail for the relatively simple case wheref the thin film can be expressed in a coarse-graining proce-

the vortex velocity is linear with respect to the magnetic fielddure through the difference in the density of vortices and
gradient and the current. Even then, as we shall see, the basigtivortices,

uniformly translating front solutions can still have surpris- .

ingly complicated behavior. We find that the density of vor- B=(n"-n)doe,. )
tices which penetrate the sample vanishes linearly for largghe dynamical equations for the fields of vortices and anti-
enough front velocities, but with a fractional exponent forygtices are simply the continuity equations

front velocities below some threshold velocit$0]. Since

the latter regime appears to be physically less relevant, and f9_”+ =V .(n"v) - n'n”

since we do not want to overburden the paper with math- ot T

ematical technicalities, we will focus our analysis on the first

regime. As stated before, in this regime we find that an an- on” n-

isotropy in the mobility without coupling to the temperature Ot ==V .(nv)- . )

does not give rise to an instability of the flux fronts.
Our analysis will be aimed at performing the full stability where the second term on the right represents the annihila-
analysis of the fronts in the coupled continuum equations fotion between vortices of opposite sign. Note that since vor-
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tices annihilate in pairs, the total magnetic fiddd is con- X 4wy
served in the annihilation process. The annihilation terms X— |—=X —¢2T,
0 0

depend on the recombination coefficienta simple kinetic
gas theory type estimate shows that is of order ofvé&,
since the cross section of a vortex is of ordgrthe coher- n_s ﬂ_ (8)

ence lengti16]. The velocityv can be determined with the N,

phenomenological formula for the flux flow regime, We will henceforth analyze Eqs6) and (7) with D=1 and
7=1.
vE= 23 X %)ez, (4) As we already mentioned in the Introduction, and as we
shall see in detail below, the above continuum equations
where the Hall term has been neglected with good approxihave a mathematical singularity at the point whefevan-
mation for a case of a dirty superconducf@i. The drag ishes. Of course, in reality there cannot be such a true sin-
coefficient  is given by the Bardeen-Stephen mod@l] gularity and our continuum coarse-grained model breaks
and generally depends on the temperature of the sample. ffown at scales of the order of the London penetration depth.
this paper, we neglect this important coupling to the temperak particular, the derivative of the magnetic field and thus the
ture, but we will allow the mobility(the inverse of the dragg currentJ are not discontinuous with respect to the space
to be anisotropic. In passing, we also note that the aboveariable, but they decrease exponentially in a distance ap-
linear relation between the currehtand the flow velocity* proximately equal to the penetration depth. Effects like ther-
is often generalized to a nonlinear dependdri@. For sim-  mal diffusion, the finite core size, and the nonlocal relations
plicity, we do not consider this case here, but our method cawhich are neglected in the London approximation all play a
be extended to such situations. role there, and the Ginzburg-Landau equation would provide
For a type-ll superconducting material with a Ginzburg-a more appropriate starting point. Clearly, if the dynamical
Landau parametet>1/42, the magnetization of the sample behavior of our continuum model would be very sensitively
can be neglected, so thBt=H. Then, by using the Maxwell dependent on the nature of the singularity, then this would be
equation(in which the term related to the displacement cur-a sign that the physics at this cutoff scale would really
rents has been neglected with good approximation strongly affect the dynamically relevant long-wavelength dy-
namics. In practice, however, this is not the case. First of all,
c our method to do the linear stability analysis is precisely
J=—YV XB, (5) aimed at making sure that the singularities at the level of the
4w continuum equations do not mix with the behavior or pertur-
together with Eqs(2) and (4), and substituting into Eq3), ~ bations of the front region. Secondly, as we shall see, there
we get are no instabilities on scales of the order of the microscopic
cutoff provided by the London penetration depth.

an* n‘n”

T DV [n" V(M -n)]- o (6) C. The method
In our analysis, we first study a planar front which propa-
gates with a steady velocity along thex direction. By con-
an DV .[n V-n)]- n'n” 7 sidering the propagation of the front in the comoving frame,
ot r we get a system of ordinary differential equatiq@DES

for the vortex and antivortex density fields. The derivation of
where the coefficierd is given byD=¢5/(477). Thisis the  the uniformly translating solution is discussed in Sec. Il A.
system of nonlinear differential equations which governs theas we will see, the profile that corresponds to the planar
dynamics of the vortex-antivortex front. The situation thatfront for the density of vortices is singular. In particular, in
we will study in our analysis is the following. We consider a the regime on which we will focus, the derivative of the
front of vortices which propagates into the superconducting/ortex density is discontinuous at the point where the field
thin film from the left edge ax=-L, in the positivex direc-  vanishes, while in the low-velocity regime there are higher-
tion. At x=-L,, we impose the boundary condition that order singularities. As a consequence of this nonanalytic be-
the density of vortices1* is ramped up linearly in time, havior, the numerical integration of the equations has to be
n*(-Ly,t)=Rt This corresponds to the field going up lin- done with care near the singular point.
early, just as in the Bean critical stgt23]. We impose also In Sec. lll, we perform a linear stability analysis of the
that far right atx—o, n* vanishes whilen™ approaches a planar solution. A proper ansatz consists here of two contri-
constant valuen... Through a rescaling of time and length butions: a perturbation in the line of the singular front and a
variables, the coefficients of Eq&) and (7) can be set to perturbation of the density field. As we will see, the presence
unity. In particular, it is convenient to rescale the time andof an in-plane anisotropy means that ttantivortex flow
length variables according to the following transformation: velocity is no longer in the same direction as the driving
force acting on théantivortices. Hence, contrary to the iso-
tn. tropic case, we have to consider a component of the velocity
T perpendicular to the driving force. The viscosity is thus rep-
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resented by a nondiagonal tensor and depends on the angle dng 1
between the direction of propagation of the front and the fast d_§ =-v+0 F . (12)
0

growth direction given by the anisotropy. By applying a lin-
ear stability analysis, we get a system of equations for thée., we recover the well known critical state red@8] that
fields representing the perturbation. Through a shootingn the absence of antivortices the penetratifidield varies
method, and by matching the proper boundary conditionslinearly with slope . Requiring that this matches the
we are then able to determine a unique dispersion relation fdsoundary conditiom*(-L,,t)=Rt for large times até=-L

the growth rate of the perturbation. In Sec. IV, we treat thethen immediately yields thaR=v?. It can be easily derived
case of a stationary front, with a velocity=0. Contrary to  that the density of antivortices decays with a Gaussian be-
the case of a moving front, no singularity in the profiles of havior on the left. By using indeed the relatii®) for large

the fields is present and the analysis can be carried out in thfistances and substituting it in EGL0), we get

standard way.

Ng =~ Aeé, (13)
Il. THE PLANAR FRONT Since the analysis of the planar front profiles and of their
_ -~ stability is naturally done in the comovingframe, we will
A. The equations and boundary conditions in practice use a semi-infinite system in teframe, and
In this section, we analyze the planar uniformly translat-MPOSe as boundary conditions &t —L

ing front solutions*=ng(x—ot), n"=ng(x-vt) which are the dng
starting point for the linear stability analysis in the next sec- limny=0, Ilim——=0,
tion. We refer to the system in a comoving frame in which s ]
the new coordinate is traveling with the velocityof the
front, £&=x-vt. The temporal derivative then transforms into dng — (14)

o
&|x=dls~vds. Since the front is uniformly translating with glI_TLnO =const> 1, gl_',mL dé

velocity v, the explicit time derivative vanishes. In the co-
moving frame system, we considérno vary in the spatial
interval [-L, +]. Equations(6) and(7) become

Of course, in any calculation we have to make sure Lthist
taken large enough that the profile§ have converged to
their asymptotic shapes.

+

dn0 o -
-v d¢ df dg(nO No) = NMo, © B. Singular behavior of the fronts
Effectively, Eqs.(6), (7), (9), and(10) have the form of
dre d diffusion equations whose diffusion coefficient vanishes lin-
_v_nO = —ng—(ng = &) - ning. (100  early in the densities” andn™. As already mentioned, it is
dé df %d¢ well known, from, e.g., the porous medium equation

[24-24, that such behavior induces singular behavior at the
This is a system of two ODEs of second order. Motivated bypoint where a density field vanishésee, e.g., Ref[32]).
the physical problem we wish to analyze, the relevant uniBecause we are looking at fronts moving into the region
formly translating front solutions obey the following bound- wheren*=0, in our case the singularity is at the point where

ary conditions at infinity: then® density vanishes. Let us choose this point as the origin
£=0. Then the relevant front solutions han® ¢)=0 for all
S dng £>0; see Fig. 133].
g“j;'m”o =N, gllr?md_g =0, Becausen,(0) # 0, the prefactor of the highest derivative

in the n™ equation does not vanish &0, and hence one
might naively think than™ is nonsingular at this point. How-
o, dng ever, because of the coupling through the diffusion terms,
lim ng=0, lim W 0. (11)  this is not so. By integrating Eq10) over an interval cen-
A e tered arounct=0 and using that the field valueg andnj

. are continuous, one immediately obtains that
It is important to note that the constamt can actually be set y

to unity: by rescaling the density fields as well as space and ) dny dn, Ag
time, any problem with arbitrarg,, can be transformed into lim d_g - d_g
a rescaled problem with,,=1. The stability of fronts there-
fore does not depend on,, and in presenting numerical Physically, this constraint expresses the continuity of the de-
results we always use the freedom to set1. rivative of the coarse-grained magnetic fi¢k). Mathemati-

On the left, the density of vortices' increases linearly cally, it shows that any singularity in induces precisely the
with time with sweeping ratd. After a transient time, be- same singularity im,: to lowest order, the two singularities
cause of the annihilation process, the figjdand its deriva- cancel. Figure 1 illustrates this: one can clearly discern a
tive vanish. The dynamical equatig®) for then* field then  jump in the derivative oh; at the point wheran; vanishes
yields with finite slope.

=0. (15)

Aé—0
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— vortices
— antivortices

densities

FIG. 1. Profile of the planar front for the density of the vortices
p %
(n*) and antivorticegn”) for the casey=1.

Before we analyze the nature of the singularity in more
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coefficientsA; and A;, and other terms like\; separately,
but are not needed here. Together with ELf), the above
equationg19) and(20) immediately yield

-/

N =0,

n.(0)=1/2,

Al=-uv+ E, (21)
where for convenience we have now put=1.

There are two curious features to note about the above
result. First of allny always vanishes at the point whergis
half of the asymptotic valume,, at infinity. Secondly, note that
A] is negative fow =1/4 and positive for <1/4. Since the
vortex densityn* has to be positive, we see that these uni-
formly translating front solutions can only be physically rel-
evant forv=1/4.

Since the front velocity in this problem is not dynamically
selected buimposedoy the ramping rat&®=v* at the bound-

detail, we note that because of the nonanalytic behavior ary, we do expect physically realistic solutions witk<1/4

£=0, it is necessary to analyze the regién 0 wheren;
#0 separately from the one @>0 wheren;=0. In the

to exist. In fact, it does turn out that in this regime the nature
of the singularity changes: instead of vanishing lineanjy,

latter regions, the equations simplify enormously, as the revanishes with a-dependent exponent. Indeed, if we write

maining terms in Eq(10) can be integrated immediately.
Upon imposing the boundary conditioikl) at infinity, this
yields

% S (na - noc)
dé Ny
Let us now analyze the nature of the singularity¢atO.
As the effective diffusion coefficient of the* equation is
linear inn*, analogous situations in the porous medium equa

tion suggest that the field" vanishes linearly. This motivates
us to write for —1<£<<0 [34]

o) =ATE+AZE+ -+

£>0. (16)

No(8) = ALE+AE + -+ + (), 17)

wheren_(¢) is the analytic function which obeys E(L6)
for all & Clearly, the continuity conditioiil5) immediately
implies

Al=A]. (18)

If we now substitute the expansiqt7) with Eq. (18) into
Eq. (9) for ny we get by comparing terms of the same order

A=) =0, 0(),

AA;-A)-2n)-n,=0, O(. (19

Hereng =dn, /dé|., etc. Likewise, if we substitute the ex-

pansion into Eq(10) for ny, we get
20A] - 2n(A;-A;) =0, O(1) (20

since the term of order unity involvingy,, cancels in view of

for —1<¢<<0 [34]

No(&) = [4“(AT + A&+ ). (22)

No(&) = [E(AL + Azé+ ---) + 1 (&), (23
and substitute this into the equations, then, in analogy with
the result above, we find

-/ _
nan_v'

no(0) = 1/2,

Al =A],

:8 >-1>1 (v<1/4),
U

a (24)
while again foré>0, nj vanishes. A singular behavior with
exponent depending on the front velocityis actually quite
surprising for such an equatidi830]. However, one should
keep in mind that this behavior is intimately connected with
the initial condition for then™ vortices. If one starts with a
case whera™ does not approach a constant asymptotic limit
on the far right, but instead increases indefinitely, one will
obtain solutions where* vanishes linearly. For this reason,
and in order not to overburden the analysis with mathemati-
cal technicalities, from here on we will concentrate the
analysis on the regime=1/4.

Since our study will limit the stability analysis to fronts
with velocity v=1/4 in our dimensionless variables, let us
check how the scale that we consider relates with the realistic
values of flux flow velocities. By considering relatio(®),

Eq. (16). Higher-order terms in the expansion determine thethe velocities are measured in units of
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o H. [panvéy g_% pvéo The firs_t eq_uati_on can be straightforwardly integrated, and by
vp=——=C — =c\/Z3\/, =2 combining it with the second, the set reduces to
T Heo 4 a- vV 4ra

(25) dDy _- v(Dg+n.,)
dé S ’

where we have expressed the viscosityin terms of the
upper critical fieldH,, and the normal state resistivigy, by

; ; ; - dD
using [31]. Furthermorea is the distance between vortices 0(2Dg + n,)]— + (S - D?)/2
for é—oo; thus, sinceH..=¢gn.~ ¢o/a?, it follows that d__a)[ (2Dg ] dé (% % 2 (30)
lechzgglaz. For the constant we have used the esti- dé vS%+[v(DS+ n.Dy)]
mate 7 1=v&, discussed after Eq3). We can then rewrite ) ) o ) )
Eq. (25) as One can easily verify that in this formulation, the expression

on the right-hand side is indefinite at the singular pajnt
=0, as both the terms in the numerator and denominator
vanish. In order to evaluate the expression, it is then neces-
sary to perform an expansion of the numerator and denomi-
By considering typical values in Gaussian units=10°s  nator around the critical point valugd=-D=n./2. From

for the resistivity of the material, a coherence lengih=2 such an analysis one can then recover the relati@is
X107 cm for high-T; compounds, and a magnetic field which we previously obtained from a straightforward expan-
H..~20 G (which corresponds to a lengtir=10"* cm), our  sjon of the original equations. Numerically, we integrate the

ity scale is much less than values found typically in the fluxyith the help of the results from the analytic expansion.
flow regime, since in the presence of instabilities, fronts of

vortices can propagate with much higher velocities of order IIl. ERONT PROPAGATION IN THE PRESENCE
physical relevant one.

&
v = C24770a4pn' (26)

A. Dynamical equations

C. Sum and difference variables As mentioned before, we are interested in the effect that
At first glance. the eguations look like two counled &7 anisotropy in the vortex mobility could have on the sta-
9 ’ d P bility of the front. In particular, the motivation for such an

zgﬁz?fr::?fé ?g?ﬁé'?g; mz\;vﬁ:/:;rfﬂier:”eaﬁo??gremuggggyr;g%vestigation is the experimental evidence that an instability
or a flux-antiflux front was found in materials with an in-

effect the differencen*—n". In order to integrate the set of :
equations(9) and (10), it is convenient to consider the fol- plane ab anisotropy, such as, for example, Y5075

. . . . 12].
lowing transformations in the variables related to the sun{ . . . .
and difference of the density fields: In a material characterized by an in-plane anisotropy, the

effective viscous drag coefficient depends on the direction of

D=n*-n", propagation of the front. More precisely, the mobility defined
in EQ. (4) then becomes a nondiagonal tensor. This leads to a
S=n*+n. (27) nonzero component of the velocity perpendicular to the
driving Lorentz force. We want to investigate whether the
In these variables, the equations become noncollinearity between the velocity and the force is respon-
dD. d db sible for an instability of the flux-antiflux interface. In the
—p—2=— -0 (29) presence of anisotropy, the phenomenological fornidla
dé d¢ " dé then has to be replaced by
_Ud_S):ED %_%_Dg (29) V:Aﬂ_lF:FR_l(l O)RF, (31
dé  de ° de 2 0 a

whereI is a constanta represents the anisotropy coeffi-
cient, andR is the rotation matrix corresponding to an angle
6 between the direction of propagation of the frardand the
principal axesx’ of the sample. The coefficient varies in
the range[0,1] with the limiting case of infinite anisotropy
corresponding tex— 0. Fora=1, the isotropic case is recov-

By numerically integrating Eq928) and (29) and looking
for the solutions which satisfy the boundary conditions
above, we obtained the uniformly translating front solutions.
As Fig. 1 illustrates forv=1, the profile is singular at the
point where the density of the" field vanishes linearly, in

agreement with the earlier analysis. d Th Aq . icular b
Because of this singularity, the numerical integration ofS'€d- The matrix; = Is given in particular by
the set(28) and(29) is quite nontrivial. In particular, because ) ( cof 9+ asirt @ cosdsind(l-a) )
. e o e i Sl (32
of the discontinuity in the derivative of th& field, the sys 7 CosOSinO(l-a) «codh+sirte (32

tem (28) and (29) effectively needs to be solved only in the

interval[-L, [, as the matching to the behavior %0 has  The dynamical equations for the fields andn™ in the pres-
already been translated into the boundary conditi®®y.  ence of anisotropy generalize to
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FIG. 2. Perturbed front profile
for the vortex and antivortex den-
sity field. The fronts propagate in

252 the x direction and have a sinu-
soidal modulation in they
direction.

N(4,y,t) =ng(Q) + e(ny +iny)()eWretidt  (37)

wheren; and n, are simply the planar front profiles deter-
mined before. Note that since we write these solutions as a
function of the modulated variablg even the first term al-
ready implies a modulation of the singular line. Indeed, the
standard perturbation ansatz would fail for our problem be-
use of the singular behavior of the front. The usual ansatz
a stability calculation

(33

where the length and time variables have been rescaled ar‘ﬁ?
the elementsk and p depend on the anglé through the 0

formulas n*(&£y,t) =n5(&) + e(n} +inj)(§ereiot  (3g)

_cosésin 6(1-a) _ a cog+sirt
T co20tasi?e ' P co2o+ asife

(34)  only works if the unperturbed profiles are smooth enough
and not vanishing in a semi-infinite region. If we impose on

Starting from an initially planar profile derived in Sec. Il A, our corrected linear stability analysis the conditions

we want to study the linear stability of the front of vortices o
L : T o n; +in

and antivortices by performing an explicit linear stability X bounded and +——2 bounded, (39)

analysis on Eq(33). Ny Ny

n; +iny

then ase — 0 the perturbations can be considered small ev-
erywhere, plus we allow for a modulation of the singular line
As we have already mentioned in earlier sections, ouf29].
linear stability analysis differs from the standard one, due to We next linearize Eq(33) around the uniformly translat-
the presence of a singularity. The type of perturbation thaing solution according to Eq$36) and(37). We obtain a set
we want to consider should not only involve the profile in theof four linearized ODEs for the variableB,,D,,S;,S,,
region wheren® vanishes, but should also in particular in- which correspond, respectively, to the real and imaginary
volve the geometry of the front. In other words, as Fig. 2parts of the difference and sum variables introduced in Eq.
illustrates, we want to perturb also the location of the singu{27). These equations, which are reported in the Appendix,
lar line at which the density* vanishes. As discussed in depend also on the unperturbed profiRg,S,, which are
more detail in[29], the proper way to implement this idea is known from the derivation in Sec. Il A. Moreover, there is an

B. The linear stability analysis

to introduce a modulated variable explicit dependence on the parameters, ().
' ' In order to analyze the stability of the front of vortices
L&Y, 1) = £+ eeWyrotit (35  and antivortices, the dispersion relatiaiiq),(q) must be

_ o _ ~derived. This can be determined with a shooting method: for
and then to write the densities in terms of this “comoving” every wave numbeq there is a unique value of the growth
modulated variable. Of course, the proper coordinate is theate » and frequency) which satisfies the boundary condi-
real variable Reg/. However, when we expand the functions tions related to the perturbed front. If the growth rate is posi-

in Fourier modes and linearize the dynamical equations injve, a small perturbation will grow in time, thus leading to
the amplitudes, each Fourier mode can be treated separatelyan instability.

Thus, we can focus on the single mode with wave nungper
and amplitudes and then take the real part at the end of the )
calculation. The profiles of the fields* and n~ are now C. The shooting method

perturbed by writing The singularity of the front makes the numerical integra-

. . R ——— tion difficult to handle, as in the case of the planar front. In
n*(£,y,t) =ng(4) + e(ng +inz)({)€ .+ (38 view of the relationg39), the boundary conditions
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n;=0, ny=0, (40) From the equations for the perturbed fields given in the
. . Appendix, the boundary conditions & -L can be derived.
have to be imposed faf=0. These yield the boundary con- jyst Jike the unperturbed field for the antivortex density van-
ditions for the variable®;,S;,D;,S,, ishes on the left with a Gaussian behavior according to Eq.
S,=-D;, S,=-D,. @y 13 also the perturbations; andn;, vanish as a Gaussian,
i.e., faster than an exponential.

Moreover, by substituting these boundary conditions and the Moreover, since the density of vortices increases linearly
relations (21) for the unperturbed fields in the linearized asymptotically, we can retain in the equations only terms
equations forD;,D;,S;,S,, the following relations can be which are proportional to the density of vorticey. From

derived for{ vanishing from the leff35]: this we get the following equation for the density of the
dD, perturbationsn*=n; +in; for {<-1:
. ot quZ(O)r (42) 2 QA+ + +
di | o d<on . dén N dn,
+ 2igk - on =pg——-. 46
a FAaky, P pqzdg (46)
db, = - gkD,(0) - 2qk dDo ) (43) The solutions of this equation which do not diverge are of
df lo- df |o- the form
An explicit expression for the derivative of the sum of the dng _ PR
real and imaginary part of the perturbatid®sS, can also be on'=- it Cet, N=igk+\[g*(p-K)], (47)
: . ) ) l
derived from the equations reported in the Appendix. In par-
ticular, these have the following generic form: whereC is an arbitrary constant arkland p represent the

coefficients of anisotropy defined in E@4). Thus, the per-

4509 _ M) a5 _ Nod) (44) turbations decay on the left of the film with a decay length

d¢ Dy’ d¢ DAY’ £, such that
which is similar in structure to Eqg30): N;,D;,N5,D, 1 —
depend or through the set of functions % =qgvp-k-. (48)
(D S db, d% D.,S, db, D,,S, @) Note that the decay length becomes very large for small
O g T dg TR de ) g—this type of behavior is of course found generically in

diffusion limited growth models. Technically, it means that
we need to be careful to take large enough systems to study
the smallg behavior. From the numerical integration, it was
‘verified that Eqs(47) and(48) describe correctly the behav-
ior of on* at large distance.

Furthermore, since vortices are absent in the positive re-
. . ion, we have to impose that the density of the perturbation
culty can be overcome in the same way as in Sec. Il B for th elated to then* field, and its derivative in space, have to

derivation of the.planar fron.t profile. In particular, we cannot anish there. Similarly, we get a second ODE with constant
sr:artbtheklntegra_tmn at t_he singular pomt,”b du_t we have t% Stl""réoefﬁcients by considering that the density of antivortices is
the backwards Integration at some small distance on the left, o o¢ large positive distances. Taking agginl, we

of £=0. We do so by first obtaining the derivatives of the get, forz>1

fields S; and S, analytically through the expansion of Egs. ' '

(44) around the critical point. In the limif — 0, this yields d2en” . don” . B

the following self-consistency condition for the derivatives: T v+ 2qu)d_§ - (pf + 0 +iQ)on"=0. (49

and on the parametetg w, ().

Equations(44) are not defined at the singular point. By
substituting the boundary conditions given by Eqgs
(41)—«(43), both the numeratord/;, NV, and the denominators
D1,D, vanish. Again, as with Eq(30), we encounter the
problem of dealing with the singularity d@=0. This diffi-

In order to satisfy the boundary condition, we must consider
the solution which vanishes exponentially. The solution of
this equation which does not diverge is of the form

where N7, N;,D;,D; denote the derivatives of the corre-

as _ Mo as _ Nilo-
o Do’ dloe Dio’

(45)

sponding functions evaluated at the singular point. Once on = Cle”i?, Re(f) <0. (50)
these are solved and used in the numerics, the integration can ) . ] ] )
be carried out smoothly. We applied the shooting method in a four-dimensional space

Because of the singularity at the poift0, the derivative ~defined by the free parameteis(0),D5(0), , and 2, by
of the perturbed fields is not continuous there and a relationintegrating backward in the intervtL,0] and then in0,
ship for the discontinuity in the derivatives can be derived, as-[, looking for solutions of the typé47) and(50).
was the case for the unperturbed fields. In particular, the By matching the solutions to the boundary conditions
expression(15) is generalized for the perturbed field. This .
implies that the derivative of the total magnetic field is again lim n* = - drg limnt=0

. . . 1 ’ 2 ]
continuous even at the singularity. oL dZ  —-L
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FIG. 4. Imaginary part of the growth rata(q) for different

FIG. 3. Dispersion relatiom(q) for different values of aniso- : - : .
values of the anisotropy coefficieat with velocity v=1.0.

tropy coefficienta and a velocityp=1.0.

L L the front shifts along the direction transverse to the propaga-
ghﬂlﬁnl =0, glerxnz =0, (51) tion direction. The behavior of)(q) is linear for low wave
numberqg and is proportional to the nondiagonal element of
the mobility tensok,

we then obtain a unique dispersion relation for the real part

of the growth ratew(q). Q(q) <kg, q<1. (53

D. Results For an anisotropy coefficient equal to 1, the isotropic case is

. . . . recovered and thef)(q) vanishes identically for all wave
Figure 3 represents the dispersion relation for an angl

; ey . Rumbers.
0=ml/4 and different coefficients of anisotropy The front As we have already mentioned, the equations that we
is always stable, even in the presence of very strong aniSQave used are valid at scales Iarg,er than the cutoff repre-
tropy, for very low values ofv. As t_he anisotropic coefficient sented by the London penetration depth. Anyway, since our
«a is lowered from above, for fixed wave numbgy the ’

rowth ratew(q) increases, but it is always negative. For results clearly show a stability in the largebehavior, our
gmallq a quagratic behavi;)r ab(q) is founﬁ 9 ) model provides a good description for the dynamics of the

front.
In Fig. 5, we plot the growth rate as a function ofy? for
different values of the anglé Linear regression then gives a
w=cq, q<1, (52 slope corresponding to the constanin Eq. (52), which is

half the second derivative of the growth rabewith respect

to the wave number at=0. The dependence cfas a func-
where the(negative coefficientc depends on the anisotropy tion of the angled is shown in the lower plot. As the angte
of the sample. In Fig. 4, we have plotted the frequeficgs  increases, the front becomes more and more stable. This be-
a function of the wave numbeg. One observes from Eq. havior can be understood directly from the form of the equa-
(35) thatQ)/q is the velocity with which the perturbation of tions. By applying the transformation

5x107

. FIG. 5. (a) Plot of w(g?) as a function of the
] angle 6. (b) For a coefficient of anisotropyr

_ =0.8 and a velocity =1.0, the results from linear
regression for the slope evaluated @t0, c
=dw/d(g?), are plotted as a function df

O 1107

6=0.0
0= /8
0=1/6
0=m/4
6=m/3
0=3n/8
O=m/2

2x107°F o= cg?

peOAaswmO

25107 L1 ] ] T 20 I L I ) )
0 2x10 4x10™ ox10™ 8x10™ 1x10” 0 wi2 w6 w4 w3 Swi
2

(@) q (o) 0
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1.5

densities

0.5

— vortices
- |— antivortices

1 1 N 1
25 3 0 5

15 0
3

FIG. 7. Density profiles for vortices and antivortices in the sta-
tionary casgv=0). The profiles are smooth and are not character-
ized by singularities, as was the case for fronts propagating with
finite velocity.

1
2
A\

FIG. 6. Velocity dependence of half the second derivative of
(q) with respect tag evaluated ag=0. As the velocity increases,
the front becomes more and more stable.

K
6—>E—0, 0< 6< 7l4, (54
—ny—(ng—ng) —ngny =0. 58
the elements of the mobility tensor transform into d¢ Odg( 0~ o) ~ Moy 58)
1 k The profiles of vortices and antivortices are symmetric in this
p— 5 k— 5 (55) case, and outside the interfacial zone the density fields can be

o _ _ easily derived analytically. By neglecting the annihilation
By considering the quadratic relation ©fq) for smallgand  term, the profiles of vortices and antivortices have a depen-
the fact that the equations are invariant under the transformatence on the coordinatgof the type

tionsg=pqg and(55), it is easy to derive .
q=pq and(55) y ng = VN? ¥ 2C(¢+ &), (59

— "2
@@z 0<p<1, (56) where]-¢£;,&[ denotes the region where vortices and anti-
which proves that the dispersion relation becomes morgortices overlapN is the density at+£;), andC is a con-
negative asy increases. When the direction of propagationstant. The density of vortices and antivortices decays with a
is that of the fast growth direction, the isotropic case isGaussian tail, as can easily be calculated from Esjg.and
recovered. (58). For Eq. (57), by considering thatn; assumes a
In Fig. 6, we show the dependence of the coefficeas  Gaussian-like dependence, and from the form of(68), we
a function of the velocity of the front. The front is stable for get the following equation:
velocities for whichng vanishes linearlyv =1/4). Further- b
more, the front becomes more stable with increasings dnpdry _ . -
, _ - =nghy (60)
one can easily understand from the form of the unperturbed dé d¢
front, the vortex density profile becomes steeper with in
creasing the velocity. The — limit corresponds to the
case of a front of vortices propagating in the absence o? '
antivortices. Thus, the results confirm the stability of the NG ~ AeeENIC-26) (61)
front without an opposing flux of antivortices.

“This yields in a self-consistent way a Gaussian behavior for

whereA is a constant. The density profiles for the vortices
and antivortices are represented in Fig. 7. The stability of the
front was studied by following a similar procedure as for the
As we mentioned in the Introduction, we have also anaimoving front. Because of the regular profiles, the anczy
lyzed the case of a stationary front, wiike 0. In this case, it that we have applied for the case of a finite velocity is not
is easy to derive the unperturbed profiles for the densities dfequired. Thus the linear stability analysis can be carried out
vortices and antivortices, since they are continuous and di the standard way and the linearized equations for the per-
not present any singularities. This case was previously studurbation can easily be integrated. We do not explain here the
ied in [17] and treated in terms of a sharp interface limit. procedure in detail, since it is a simplified version of the one
Equations(9) and(10) in this case simplify to discussed in the previous section.
As Fig. 8 shows, an instability is found below a critical
—n*i (57) coefficient of anisotropya,~0.02. These results confirm
d¢ °dé previous approximate calculatiofi$7], but, as we have al-

IV. STATIONARY FRONT

(ng—Ng) —Ngng =0,
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velocity, the valuen, at the singular line is exactly../2 for
anyv. Is this simply a mathematical curiosity or is the ab-
sence of instabilities related to this unexpected feature
through the boundary conditions at infinity? Is the presence
of a gradient in the antivortex distribution far ahead of the
front perhaps necessary to generate a long-wavelength front
instability? These are all still open issues, so clearly it is
difficult to make general statements about (transient sta-

bility of such fronts in less idealized situations.

One possible interpretation of the results is that when one
has a finite slab into which vortices penetrate from one side,
| { and antivortices from the other side, a stationary modulated

-0.06 P T T T front (anihilation zong forms in the middle for extremely
q i : large anisotropies. However, a moving front never has a true
Mullins-Sekerka-type instability, since a protrusion of the
front into the region of antivortices is always damped as a
FIG. 8. Dispersion relatiom(q) in the case of a stationary front. ragylt of the increased annihilation.
An instability is found for a critical anisotropy coefficient, The fact that the turbulent behavior at the interface be-
~0.02. tween vortices of opposite sign was found in a temperature
window [12] shows that the coupling with the local tempera-
ready underlined, this coefficient would correspond to an exture in the sample has to be considered. It appears that it is
tremely high in-plane anisotropy which is not found in any necessary to include both the heat transport and dissipation
type of superconducting material. We conclude that thign the model. Applying an appropriate stability analysis to
model of a stationary front in the presence of anisotropy isuch extended models is clearly an important issue for the
insufficient to explain the turbulent behavior that has beerfuture.
found experimentally at the flux-antiflux boundary.
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instability is very high when compared with real values that
can be f%)und fgr n?aterials with FE)oth tetragonal and ortho- APPENDIX A: LINEARIZED EQUATIONS
rhombic structurg20,2]], even when a nonlinear current- FOR THE PERTURBED FRONT
electric field characteristic is considergtB]. From a theo- From the linear stability analysis, we get the linearized
retical point of view, the behavior in the limit of small but equations for the variabld3 and S,

V. CONCLUSIONS

finite v is still open as we have not investigated the range dD, dD, dD
0<wv<1/4 where the profiles have a noninteger power-law w(D1+ —) D, + pq2$J<D1 ) = 4p—2
singularity. It could be that the instability gradually becomes d¢ d¢ d¢

suppressed as increases from zero, or it could be that the dSo dD, dD, )\ [ dS, dZDl d?D,
limit v —0 is singular, and that moving fronts are stable for dz d_g + d_g d_g +S 31_

any nonzeraw. Only further study can answer this question. d¢? d¢?

Our calculations differ markedly from previous work in , dS dDg
that we focus on moving fronts from the start, where our -a z%d_ d_gDZ 52 (A1)
results follow from a straightforward application of linear
stability analysis to our model. Taken together, these results dD, S/ dD,
lead to the conclusion that a model which includes a realisticwD, + Q<D1 + d_> +peSHD, = + v (d_>(_>
in-plane anisotropy, but which neglects the coupling with the 4
temperature, cannot explain the formation of an instability at dDg\ [ dS d2D2 d2D0
a vortex-antivortex boundary for sufficiently large front ve- d_g d_g S 2 dgz

locities. At the same time, our calculations show that the 5
issue of the stability of vortex fronts is surprisingly subtle .4 Do) . d—SO<D . dDo) N dDO(Sl d_%) (A2)
and rich. For example, we note the fact that for any front dZ? dz\ 7t dg d¢g d¢ /]’
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d_Sn) ) ( %) _, s

w(Sl+ o QS, + pgfDy| D4 + i) +vd§
+2< oz )\ 'ag ) *Pogg *Prga ~ak 2oy,
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ds o ds (dD0><dD2)
wSZ+Q<Sl+—d§>+pq2DOD2— +v_d§ +2 o )\
d’D d’D dD, d’D
L R )
+2%(D +%ﬂ -$S,+DgD (A4)
dz 1 dz oY2-
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